In-vehicle Multi-channel Signal Processing and Analysis in UTDrive Project: Driver Behavior Modeling and Active Safety Systems Development
نویسندگان
چکیده
It has been pointed that most of the accidents on the roads are caused by driver faults, inattention and low performance. Therefore, future active safety systems are required to be aware of the driver status to be able to have preventative features. This probe study gives a system structure depending on multi-channel signal processing for three modules: Driver Identification, Route Recognition and Distraction Detection. The novelty lies in personalizing the route recognition and distraction detection systems according to particular driver with the help of driver identification system. The driver ID system also uses multiple modalities to verify the identity of the driver; therefore it can be applied to future smart cars working as car-keys. All the modules are tested using a separate data batch from the training sets using eight drivers’ multi-channel driving signals, video and audio. The system was able to identify the driver with 100% accuracy using speech signals of length 30 sec or more and a frontal face image. After identifying the driver, the maneuver/ route recognition was achieved with 100% accuracy and the distraction detection had 72% accuracy in worst case. In overall, system is able to identify the driver, recognize the maneuver being performed at a particular time and able to detect driver distraction with reasonable accuracy.
منابع مشابه
Getting start with UTDrive: driver-behavior modeling and assessment of distraction for in-vehicle speech systems
This paper describes our first step for advances in humanmachine interactive systems for in-vehicle environments of the UTDrive project. UTDrive is part of an on-going international collaboration to collect and research rich multi-modal data recorded for modeling behavior while the driver is interacting with speech-activated systems or performing other secondary tasks. A simultaneous second goa...
متن کاملDriver Behavior Modeling Using Hybrid Dynamic Systems for ‘driver-aware’ Active Vehicle Safety
Modern safety systems are transforming vehicles from human-controlled passive devices into human-centric intelligent/ active systems. There is a wide range of systems from fully autonomous vehicles to humanaugmented control devices which have emerged in this field. In current trends, co-operative active systems have the driver in the decision and control processes are favored for their ‘human-c...
متن کاملMANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios
Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...
متن کاملIntelligent Control System Design for Car Following Maneuver Based on the Driver’s Instantaneous Behavior
Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. In the process of developing such systems, simulat...
متن کاملDeveloping a Model of Heterogeneity in Driver’s Behavior
Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...
متن کامل